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BAROCLINIC   INSTABIL ITY  WITH  VARIABLE  GRAVITY 
- A  PERTURBATION  ANALYSIS 

1 .  INTRODUCTION 

When the Space Shuttle becomes operational  in  the 1 9 8 0 ' ~ ~  some 
of the  flights will take  into  orbit  a  laboratory known as  Spacelab. Space- 
lab will have  the  environment of a  laboratory on the  Earth's  surface, 
except  that when in  orbit  the  value of effective  gravity wil l  be very 
small. A principal  use of Spacelab will be  to  exploit this low gravity 
environment  for  science  and  technology.  In  particular , it will be 
possible  to perform  geophysical  fluid flow  model experiments  in  true 
spherical  geometry. A radial  dielectric  body  force, which is analogous 
to gravity,  can  be  achieved  over  a volume  of liquid  held  between two 
spheres.  Such  experiments  cannot be  performed in  a  laboratory on the 
Earth's  surfaco  because  the  dielectric  body  force  cannot be made large 
enough  to dominate the  effect of terrestrial  gravity. A spherical model 
of the  baroclinic,  synoptic-scale  processes of the  Earth's atmospheric 
circulation  is  being  designed for Spacelab. 

Since the  last  century,  laboratory  investigations  seeking  insight 
into  large-scale  circulations of the  Earth's  atmosphere  have  been  per- 
formed. In  these  experiments  a  fluid was subjected  to  a  horizontal 
temperature  gradient  and  rotation;  the  temperature  gradient modeled the 
polar-equatorial  gradient  and  the  rotation of the fluid container modeled 
the  rotation of the  Earth.  The  early  experiments  were  qualitative  in 
nature;  systematic  and  quantitative  developments  date from the 1950's .  
Experiments  in  rotating  cylindrical  containers with heating  at  the r i m  and 
cooling at  the  base were carried  out  by  Fultz  et al. ( 1 9 5 9 ) .  These 
experiments  established  the  existence of two flow regimes, an axisymmetric 
flow for high  heating  and low rotation  and an unsteady, non-axisymmetric 
flow for low heating and high  rotation.  Experiments  in  a  rotating 
cylindrical  annulus with differential  radial  heating were performed  by 
Hide (1958)  , who discovered  a  steady , non-axisymmetric flow regime in 
which a  jet flow meandered in  a  regular manner  between  the  boundary 
cylinders.  These  annulus wave flows proved more amenable to  systematic 
study  than  the  cylinder flows (Fultz  et  al. , 1959;  Fowlis and  Hide, 1965;  
Kaiser , 1 9 7 0 ) .  

Scaling of the  governing  equations  for  the  large-scale  features 
for  both  the  atmosphere  and  the  laboratory models leads  to  a.,set of 
approximate  equations for both  systems (Holton , 1972) .  These  equations 
are known as the  quasi-geostrophic  equations.  Thus,  the  experiments 
are models of the  synoptic-scale  atmospheric flow. I t  is generally  agreed 
that baroclinic  instability is the  process  responsible  for  the  large-scale, 
nonaxisymmetric flow in  both  the  atmosphere  and  the models (Lorenz , 
1962) .  



Although much has  been  learned from the  cylindrical  annulus 
experiments,  further  progress is inhibited  by  the geometrical difference 
between  the  cylindrical  annulus  and  the  Earth's  thin,  spherical-shell 
atmosphere.  The  obstacle  to  the  extension of the  cylindrical  experiments 
to  spherical  geometry  has been the  difficulty of simulating  a  dominant 
radial body force. For a  dielectric  liquid  contained  between two con- 
centric  spheres  and  subject  to  a  voltage  difference  across  the  spheres 
in  the manner of a spherical  capacitor , it has  been shown by H a r t  (1976) 
that  a  radial  dielectric body  force of the following form exists: 

where R. and R are  the  radii of the  inner  and  outer  spheres,  respec- 

tively; E and p are  the  dielectric  constant  and  the  density,  respec- 

tively,  at some reference  temperature; q and y are  the  temperature 
coefficients of dielectric  constant  and  density,  respectively; V is the 
voltage  difference;  and r is any  radius  between Ri and Ro. Values for 

the dimensions of the  proposed  Spacelab  experiment  and for the  proper- 

ties of suitable  dielectric oils yield a  typical  value of g = 200 cm/sec 

(Hart, 1976; Fowlis and  Fichtl, 1977). Thus , the need to perform these 
spherical model experiments  onboard  Spacelab becomes clear. Only in  a 
low gravity  environment will the  dielectric body force dominate. 

1 0 

0 0 

2 
E 

The  fact  that  effective  Spacelab  gravity will not  be exactly  zero 
is due  to  orientation  rocket  firings, crew movements , the  vibration  of 
Shuttle  and  Spacelab  equipment,  gravity  gradient  oscillations of the 
Shuttle , the  deceleration  in  orbit  due  to  atmospheric  drag,  etc.  The 
combined effect of these  sources will depend on many variables,  but  a 

typical  value is estimated  at 0.1 cm/sec2, which gives  a  ratio of 5 x l o d 4  
when compared to the  value of the  dielectric  body  force  previously  given. 
For special  "quiescent"  orbital  flight  periods,  this  ratio could  be several 
orders of magnitude  smaller. 

Design  calculations are  in  progress for  a spherical, baroclinically 
unstable model for  Spacelab. Ultimately , a  numerical , nonlinear , spherical 
model  will be constructed,  but to  achieve understanding many theoretical 
calculations of increasing  complesty  have  been  undertaken. Since some 
of these  calculations  are also relevant  to  a wide range of research 
interests  in  theoretical dynamical  meteorology  and oceanography,  they have 
been  presented  in  publications (Fowlis  and Arias , 1978; Geisler and 
Fowlis , 197 9). 
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Equation (1) shows that  the  dielectric body  force is a  strong 
function of the  radius.  It was decided  to  calculate  the  effect of this 
variation on baroclinic  instability.  In  Section I1 a  quasi-geostrophic, 
.baroclinic instability problem in which gravity is a  function of height is 
formulated. In Section I11 a  solution is obtained  using  a  perturbation 
procedure.  In  Section IV the  results  are  discussed and the  relevant 
information  for  the  design of the Spacelab  experiment is presented. The 
solutions  are also relevant  to  other  geophysical fluid flows in which 
gravity is constant  but  the  static  stability is a  function of height. 

1 1 .  FORMULATION OF THE PROBLEM 

The  quasi-geostrophic  equations  used  to formulate the  stability 
problem are well  known and will not  be  re-derived  here.  Systematic 
derivations  and  discussions  have  been  given  by  Pedlosky (1964)  and 
Holton (1972) .  We consider  the  fluid  to be contained  in  a  rotating 
rectilinear  channel with rigid  horizontal  and  vertical  boundaries.  The 
horizontal  radial  and zonal directions  are  denoted  by x and y ,  respec- 
tively, and z denotes  the  vertical  direction.  The nondimensional, 
linearized,  incompressible,  quasi-geostrophic  equation for the  perturba- 
tion pressure,   p(x,y,z  , t)  is 

where u(y,z) is the  basic  state zonal flow velocity in  the  x-direction  and 
a q / a  y is the meridional gradient of the  potential  vorticity of the basic 
state  defined  by 

a g =  a a u  
ay2  

2 

a Y  B - (F 2) - "_ 

F(z )  is the  rotational  Froude  number  (inverse  Burger  number)  defined  by 
F = f 2L2/N2H2,  where f is twice the  rotation  rate, and L and H are  the 
respective  distances between the  boundaries  in  the  y and z directions. 

N (  Z )  is the  Brunt-Vaisala  frequency  defined  by N = (yg a T / a  z )  , 
where  g is the  acceleration of gravity and a T (y  ,z) / a z . i s  the  basic  state 
vertical  temperature  gradient.  The  quantity P represents  the scaled 
latitudinal  derivative of f .  

1 I 2  
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The nondimensional boundary  conditions, which state  that  the 
normal  component of flow at  the  boundaries is zero,  are 

P = O  , on y = O , l  . 

For a normal mode wave disturbance of the form 

where @(y,z) is the  perturbed  pressure,  k is the zonal wave number 
(taken  as  real), and c is the  phase  speed  (taken  as complex, c = c + 
ic.) ; equations ( 2 )  , (4) , and ( 5 )  become, respectively, r 

1 

(u  - c )  qZ - uz@ = 0 , on z = 0 ,  1, 

@ = O  , on y = 0 ,  1, 

where  the  suffixes  denote  differentiation. 

To soive the problem we take  u as a  function of z only and  put 
6 = 0. Equation (7)  then  takes  the form 

Equation (10) is separable. Assuming a  solution of the form $(y ,z)  = 
x (y)  $ (  z)  and using  the  boundary  conditions (9)  , we obtain 

4 



where K = k + m n , m = 1, 2 ,  . . . . The  boundary  conditions (8) 
become 

2 2 2 2  

(u  - c) @ z  - uz@ = 0 , on z = 0 ,  1 . (13)  

We are  concerned w i t h  the solution of equation (12) for  variable 
gravity. For a  general power law,  equation (1) can be written  in  the 
form 

g = go (1 + F ) - n  Y 

where go and zo are  values  at  the  origin of the  coordinates  and  n is a 
constant. Using equation ( 1 4 )  and  assuming that all other  quantities  in 
F  are  independent of z,  we obtain 

where Fo = f L /No  H and No = (ygo 8 T /  a z ) ” ~  and  where Fo and No 2 2   2 2  

are  independent of z .  From the thermal wind relationship, we have  for 
the dimensional vertical  shear of the  basic  state 

aT 
gy ay U Z ( Z >  = f 

Using equation (14)  and  again  assuming that all other  quantities  are 
independent of z,  we obtain 

-n 
uz(z)  = 5 0l-l 5 (1 + F) , 

5 



where 5, = goyf, a T / ay  and 5 is a  characteristic  value of U ( z )  used 

to nondimensionalize U z ( z ) .  ro and 5, are  independent of z .  Let us 

consider  the  last term in  equation (12). Note using  equations (15) and 
(16) that  the combination Fuk is independent of z and  hence  this term 

vanishes  identically.  Equation (12) then  reduces  to 

-1 
v Z 

( F @ Z ) z  - K2@ = 0 

Expanding  equations ( 1 4 ) ,  (15) , and (16) to  first-order  ,in 1-1 
we obtain 

Equations (18) through (21) approximate the more exact forms previously 
given when 1-1 is small. In the  next  section we shall solve this  approxi- 
mate variable g problem. 

The  solution of.  the problem for constant g,  (i.e. v = 0) was 
first given  by Eady (1949). A succinct  statement of Eady's problem has 
been  given  by  McIntyre (1970). Eady's problem is formulated from the 
above  equations  as 

2 
@ozz - $o = 0 Y 
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u =  Z 
0 Y 

where K = K/F:I2. The  solutions  are 

co - 3 5 2 a {(a - coth a) ( a  - tanh a)} - 1 1 -1 1 / 2  
Y 

$0 - 
- K C cosh K Z .  - sinh K z (26)  

0 

where a = ~ / 2  . The solutions represent  either an  amplifying-decaying 
pair of waves with c = R (c ) = 1 / 2 ,  or  a pair of neutral waves with r e o  

- > and - < 1/ 2 , according  as K < or 2 K~ where 

K = 2.3994 ( K~ = coth K ~ )  . N ( 2 7 )  

There is a  short  wavelength cutoff to  the  instability  at  the  critical 
neutral wavenumber K There is also a maximum growth rate  for some 
K < K  K = K  

N' 
N; " 

I I 1 .  SOLUTION B Y  A  PERTURBATION  METHOD 

In  this  section we shall  solve the problem posed by  equations 
(17) (18) , (19)  (13) and ( 2 1 )  using  a  perturbation method. The 
procedure followed is that  described  by  McIntyre (1970) and it requires 
that p << 1. Figures 1 , 2 , and 3 show g/go , F /Fo , and b-'u  from 
equations (18) , (19) ,  and ( 2 1 )  , respectively , plotted  as  functions of z 
for 1-1 = 0, 0.05, 0 .1 ,  0 . 3  and 0 . 5 .  We take 1-1 to  be  a  perturbation 
parameter  and  write 

S-lu(z) = z + U U , ( Z )  y 

I 
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Figure 1. Distribution of gravity,  g/g = 1 - 
0 

p z for the  values of p as  indicated. 

1.0 1.2 
FIFO 

1.4 1.5 

Figure 2. Distribution of the  rotational Froude 
number, F /F  = 1 + 1-1 z , for the values of 

1-1 as indicated. 
0 



1 

z 

.5 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 .o 
6”” 

Figure 3.  Distribution of the zonal flow, 6 u = z - - p z 2  for the  values of p as  indicated. -1 1 
2 



where 

F1(z) = Z ’ 

and 

The method is to  expand @ (  z) and  c  about the Eady solutions  (see 
Section 11) in  the following way 

Y 

+ PCl + 1-I c2  + ... 2 c = c  
0 

( 3 3 )  

It   turns out  that  this  expansion,  in  integral  powers of v , is 
appropriate  only  for  the  case K f K where K is the  transition wave- 

number from the  neutral wave regime to  the  unstable wave regime.  For 
the  case K = K the  correction  terms  obtained from the  expansions ( 3 2 )  

and (33 )  diverge. This is because  the Eady  solutions  possess  branch 
points  at K = K ~ .  In view of this , two separate  cases will  be considered. 

For the first case K # K~ , the  appropriate  expansions  are ( 3 2 )  and ( 3 3 ) .  

For K = K an  expansion  in  powers of p ‘I2 has  been found to be 

appropriate, namely 

N ’  N 

N ’  

N’ 

1 / 2 c  c = c + 1-I -t vc2 + ... 
0 

( 3 5 )  

The  substitution of equations (28)  and ( 3 2 )  into  equation ( 1 7 )  
yields,  to  zero  and  first-order  in p , respectively 

10  



I 

2 
'ozz - I(' ' o  = 0 3 

2 " lz F1 
'lzz - '1 - 

- - -  
FO 'oz Fo 'ozz ' 

where K = K /F With the aid of equation ( 3 6 )  , equation (37 )  becomes 
0 

In  a  similar fashion , the  substitution of equations (29 )  , ( 3 2 )  , and (33 )  
into  the  boundary  conditions ( 1 3 )  yields,  to  zero  and  first-order, 
respectively 

( z  - eo) $oz - $o = 0 , on z = 0 ,  1 , - 
( 39) 

( z  - E o )  $lz - 'l + (u l  - el) $oz - u  lz $ 0 = O , z = O , l ,  

(40)  

where c" = 6 c and E l  = 6 el. Combining these two equations, we 
obtain 

-1  -1 
0 0 

Substituting from equations ( 3 0 )  and ( 3 1 )  into  equations ( 3 8 )  and ( 4 1 ) ,  
we have  finally 

11 



It can  easily be shown that  the  general  solution of the non- 
homogeneous equation (42)  is 

which is the  first-order  correction to the  eigenfunctions. With the aid of 
the  boundary  conditions (431, the two constants A and B can  be  reduced 
to one arbitrary  constant. Our  primary  interest  however,  is  the  deter- 
mination of the  first-order  correction  to  the  eigenvalue  e. 

We multiply equation (42)  by + and  integrate from z = 0 to 
0 

z = 1. The  first term on the  left is integrated  by  parts twice and then, 
with the aid of (361, we obtain  the  result 

From the zero and  first-order  boundary  conditions,  equations (39) and 
(40)  we find 

1 2  



Substituting  these  into  equation (45) , simplifying  and  solving  for we 
obtain 1' 

With the aid of the Eady eigenfunctions (26)  , this  expression  for  can 
be  expressed  in  terms of hyperbolic  functions. A neat form can be 
derived  by eliminating the  hyperbolic  functions  using  identities  derivable 
from equation (25) .  After some substantial  and  judicious  algebraic 
manipulation, i t  can be shown that 

13 



I 
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c" = o  y li 

where S = - R . Thus, for a < coth a,  ( K  < K ~ )  w e  have  finally, 2 2 

c = - + % ( R  6 2 - 3 a )  2 , 
r 16a 

c. = + s ( % + -  ' [(a2 - R 2 1 - (a2 - R 2 l 2 1  } 
1 16aR 

and for a > coth a ,  ( K > K ) N 

c = - - -  
r 16a 

c . = o  . 
1 

- 
The  quantity 6 (= 5 5 depends on a  characteristic  value  for 

Uz(z)  . We shall first plot the  results for 5'  = c0, and  hence for 6 = 1. 

This means that for the  characteristic  value of 5 we have  chosen  the 

single  representative  value  at z = 0. Figure 4 shows the  phase  speeds 
calculated from equations (51) and (53) and  plotted as  cr  versus K for 

1-1 = 0.1,  0 .3  and 0.5. The Eady result  (see Section 11) corresponding 
to 1-1 = 0 is also  shown.  Figure 5 shows the growth rates calculated 
from equations (52) and (54) and  plotted  as KC. versus K for 1 ~ .  = 0 ,  

0 .1 ,   0 .3  and 0.5.  Note that  the  values  diverge  as  .the wave number 
approaches  the Eady critical  value K = K = 2.3994. 

0l-l 

' 
Fc 

1 

N 

A s  was discussed  earlier  in this section,  the  expansions (34) and 
(35) must' be  used  at K = K ~ .  Following the  general  procedure  used 

above for K it K ~ ,  it can  be shown that  for K = K N 

1 4  
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p =  0 
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- 
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01 1 I I 
0 
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1 2 K 3 

Figure 4. Variation of the  phase  speed, c for 6 = 1, with the wavenumber K 

for the values of 1-1 as indicated. 
r ’  
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.3 

KC; 

.2 

.1 

I I I 

3 K 

Figure 5. Variation of the normalized growth rate, KC for 6 = 1, with the wavenumber IC 
i’ 

for the values of 1-1 as  indicated. 



1 2; = -  
0 2 ,  

Thus, we have 

6 c = -  
r 2 ’  ( 5 7 )  

These  results  are shown as  dots  in  Figures 4 and 5 for 6 = 1 and  for 
the same values of 1.1 as  the  curves  already  plotted. 

The  plots  in  Figures 4 and 5 are  based on representative  values 
of F and  uz  at z = 0. This means that  they  show  the  effects of both an 
average lower value  for  g  as well as  the  variation of g ,  whereas  plots 
based )on characteristic  average  values of F and  u would  show only  the 

consequences of the  variation of g. Let us choose linear  averages  over 
z for F and  u  defined  by 

Z 

Z ’  

1 
F = F(z) dz 
- 

0 

and 

6 =  
1-I 

Substit .ution from equations (19) and (20)  , r 
the simple integrations, we obtain 

especti 

- 
F = 1 + fi , implying that K = ~ ( 1  

- 
2 

.vely,  and  p 

+ - 1 p p 2  
2 

erforming 

, (59 )  

17 



Figures 6 and 7 present  plots of the  phase  speed  and  growth 
rates  based on equations (51) and  (53) , and (52) and (54) , respectively , 
and  using  equations (59) and (60) .  The  dots  are  based on equations 
(57) and (58) and using (59) and (60) .  

Since  only the  first-order  corrections are calculated,  the  results 
are  accurate  only for small 1.1. The  results  should be reasonably  valid 
for 1-1 = 0 . 1 ,  but  for  the  larger  values of p moderate errors  are  certainly 
present. 

IV. DISCUSSION 

In  this  paper we formulated  an approximate,  quasi-geostrophic , 
baroclinic  stability problem for  a body force with a  height  dependence. 
The  primary motivation for  this work  was to  determine the effect of a 
variable  dielectric body force, analogous  to gravity, on baroclinic 
instability  for  the  design of a  spherical,  atmospheric , synoptic-scale 
model experiment  for  Spacelab. In  the formulation , curvature and 
horizontal  shear of the basic state were  omitted  and the  vertical and 
horizontal  temperature  gradients of the  basic  state were taken  as con- 
stants  independent of z .  A consequence of the body force  variation  and 
the above  assumptions is that  the  transverse  gradient of the  potential 
vorticity of the  basic  state  vanishes.  This  stability problem was then 
solved  using  a  perturbation method. 

Figure 5 shows the well known results  due  to Eady (1.1 = 0) , that 
for K = K~ = 2.3994, unstable waves exist, and for K > K neutral waves 

exist  (see Section 11). The  growth  rates  for  the  non-zero  values of 1-1 
are  qualitatively similar to  Eady's  results and  converge  to  Eady's  result 
as 1.1 -t 0. Note that , because of the  divergent  behavior  at K = K ~ ,  we 

cannot  accurately locate the  critical  value of K for  each  value of u. 
However, by  extrapolation  using  the  point  values, we can  see  that  the 
critical  values move to  larger  values of K as p increases.  Figure 5 shows 
that  in  general  the  growth  rates  decrease  as 1-1 increases. This is not 
surprising  since  a dimensional statement shows the  growth  rate  depends 
linearly on g ,  and g  decreases  as 1-1 increases. Note the  cross-over 
point  to the  right of which the opposite is true. 

N 

Figure 4 shows that  the  phase  speed of the  unstable mode 
decreases  as 1-1 increases and is only weakly dependent on K .  Using 

equation t 21)  we obtain for the  average  value of 6 - l ~  , 6 u = 1 / 2  - 1.1 / 6 .  - 1- 
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Figure 6. Variation of the  phase  speed, c for 6 = (1 - p /2)-’, with the wavenumber IC r ’  
for the  values of p as  indicated. 
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Figure 7. Variation of the normalized growth rate, - K C  for 6 = (1 - 1-1 /2)  -1 , w i t h  the 
i '  

wavenumber i? for the  values of 1-1 as  indicated. 



For 6 = 1 and 1-1 = 0.1, 0 . 3  and 0.5, u = 0 . 4 8 3 ,  0 . 4 5 0  and 0 .417 ,  
respectively.  The  phase  speeds  are  in good agreement with these  values. 
Thus, like the Eady result , the  unstable mode is simply advected  at  the 
rate of the mean  flow. The  levels  at which the  actual flow corresponds 
to  the  phase  speed of the  unstable wave are known as  the  steering  levels, 
and  are  found  by  solving 

In  the  stable  region  there  are two neutral modes,  one  confined near  the 
upper  boundary  and one near  the lower boundary  (Bretherton, 1966; 
Hyun and Fowlis , 1 9 7 9 ) .  Each of these  neutral modes also propagates 
with a  phase  speed  related  to  a mean  flow in its environment.  The  phase 
speed of the lower mode does  not vary much as  a  function of 1-1 since  the 
basic flow does not change much in  the lower region  (Fig. 3 ) .  However, 
in  the  upper  region  there is a  substantial  change  as  a  function of p in 
the flow , and this is reflected  in  the  phase  speed. 

Figures 6 and 7 show the  phase  speeds  and  growth  rates  plotted 
in  terms of averaged  values of the  basic  state. For small values of 
the  growth  rates  are now almost independent of 1-1 but  for  values of 
near  the maximum growth  rate  and  near  the  critical  values,  the  growth 
rates  are  larger. 

We now proceed  to  ascertain what  information the calculation has 
for the  design of the  Spacelab  experiment. For this experiment , n = 5 
[see  equation (1) I and  the  gap-to-mean-radius  ratio, H /zo , will be 
approximately 0.1. Thus 1-1 = nH/z 0.5. Our  first-order  perturbation 

0 

calculation  cannot  be  expected  to  give  an  accurate  answer  for  such  a 
large  value of p , but  an  approximate  result  and  the  general  behavior of 
the  instability  as  g  varies  can  be  expected. [We should also remember 
that  the binomial approximation was used  to  formulate  the  equations ( 1 8 )  , 
( 1 9 )  and (20 )  and  the  accuracy  here  depends  again on 1 ~ -  being  small.] 
The  plots show that  the  results  are  qualitatively similar to  Eady’s  results. 
No new phenomena have  appeared.  The  growth  rates  based  on  averaged 
values  are somewhat larger  than  for  the Eady problem,  and  the  range of 
instability is somewhat increased.  Phase  speeds remain  close to mean 
flow speeds.  Thus , the  results  suggest  that  for a  body  force  variation 
of 50 percent,  the  stability  characteristics  are not much changed.  Future 
design  studies  should  treat  this problem more accurately. 

Although the  effect of variable  gravity  on  baroclinic  instability, 
per   se ,  is not of  much value  in  understanding  atmospheric  and  oceanic 
flows and  laboratory  geophysical fluid flow experiments,  the  solutions we 
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have  obtained  can  be  relevant  to  these flows. The  variation  in  g which 
leads  to  a  variation  in  the  Brunt-Vaisala  frequency, N , and  in  turn  to 
a  variation  in  the  rotational  Froude  number , F , could  formally have  been 
due  to  a  variation  in  the  vertical  temperature  gradient,  aT / a  z, with  g 
constant  (see  the  definitions of N and F in Section 11).  Thus , i f  we 
deal with  a flow for which N is a  function of z and  for which the  vertical 
shear is also a  function of z, such  that  the  gradient of the  potential 
vorticity,  q  vanishes , then our solutions are  relevant.  The ocean  and 

the  laboratory  cylindrical  annulus  (see  Section I )  are  systems  in which 
the  static  stability  undergoes  large  variation  with  height. 

Y’ 
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